References and Notes
<A NAME="RG08210ST-1A">1a</A>
Almeida A.
Layton M.
Karadimitris A.
Biochim. Biophys. Acta,
Mol. Basis Dis.
2009,
1792:
874
<A NAME="RG08210ST-1B">1b</A>
Berridge MJ.
Biochim. Biophys. Acta, Mol. Cell Res.
2009,
1793:
933
<A NAME="RG08210ST-1C">1c</A>
Burton A.
Hu X.
Saiardi A.
J.
Cell. Physiol.
2009,
220:
8
<A NAME="RG08210ST-1D">1d</A>
Phosphoinositides:
Chemistry, Biochemistry and Biomedical Applications, ACS Symposium Series
718
Bruzik KS.
American
Chemical Society;
Washington DC:
1999.
<A NAME="RG08210ST-1E">1e</A>
Hinchliffe K.
Irvine R.
Nature (London)
1997,
390:
123
<A NAME="RG08210ST-1F">1f</A>
Derridge MJ.
Nature (London)
1993,
361:
315
<A NAME="RG08210ST-2A">2a</A>
Deranieh RM.
Greenberg ML.
Biochem. Soc. Trans.
2009,
37:
1099
<A NAME="RG08210ST-2B">2b</A>
Ferguson MAJ.
Williams AF.
Ann. Rev.
Biochem.
1988,
57:
285
<A NAME="RG08210ST-3A">3a</A>
Kwon Y.-K.
Lee C.
Chung S.-K.
J. Org. Chem.
2002,
67:
3327
<A NAME="RG08210ST-3B">3b</A>
Suzuki T.
Suzuki ST.
Yamada I.
Koashi Y.
Yamada K.
Chida N.
J. Org. Chem.
2002,
67:
2874
<A NAME="RG08210ST-3C">3c</A>
Suzuki T.
Tanaka S.
Yamada I.
Koashi Y.
Yamada K.
Chida N.
Org. Lett.
2000,
2:
1137
<A NAME="RG08210ST-3D">3d</A>
Chida N.
Yoshinaga M.
Tobe T.
Ogawa S.
Chem. Commun.
1997,
1043
<A NAME="RG08210ST-3E">3e</A>
Chida N.
Ogawa S.
Chem. Commun.
1997,
807
<A NAME="RG08210ST-3F">3f</A>
Chida N.
Nakazawa K.
Ninomiya S.
Amano S.
Koizumi K.
Inaba J.
Ogawa S.
Carbohydr.
Lett.
1995,
1:
335
<A NAME="RG08210ST-3G">3g</A>
Chida N.
Koizumi K.
Kitada Y.
Yokoyama C.
Ogawa S.
J.
Chem. Soc., Chem. Commun.
1994,
1:
111
<A NAME="RG08210ST-4">4</A>
Akiyama T.
Hara M.
Fuchibe K.
Sakamoto S.
Yamaguchi K.
Chem.
Comm.
2003,
1734
<A NAME="RG08210ST-5">5</A>
Sureshan KM.
Shashidhar MS.
Varma AJ.
J. Org. Chem.
2002,
67:
6884
<A NAME="RG08210ST-6">6</A>
Hosoda A.
Miyake Y.
Nomura E.
Taniguchi H.
Chem. Lett.
2003,
32:
1042
<A NAME="RG08210ST-7">7</A>
Sureshan KM.
Gonnade RG.
Shashidhar MS.
Puranik VG.
Bhadbhade MM.
Chem. Commun.
2001,
881
<A NAME="RG08210ST-8A">8a</A>
Müller P.
Nikolaus J.
Schiller S.
Herrmann A.
Möllnitz K.
Czapla S.
Wessig P.
Angew. Chem.
2009,
121:
4497
<A NAME="RG08210ST-8B">8b</A>
Wessig P.
Möllnitz K.
J. Org. Chem.
2008,
73:
4452
<A NAME="RG08210ST-8C">8c</A>
Wessig P.
Möllnitz K.
Eiserbeck C.
Chem. Eur.
J.
2007,
13:
4859
<A NAME="RG08210ST-9">9</A>
Riley AM.
Jenkins DJ.
Potter BVL.
Carbohydr. Res.
1998,
314:
277
<A NAME="RG08210ST-10">10</A>
Hudlicky T.
Restrepo-Sanchez N.
Kary PD.
Jaramillo-Gomez LM.
Carbohydr.
Res.
2000,
324:
200
<A NAME="RG08210ST-11">11</A>
Hudlicky T.
Stabile MR.
Gibson DT.
Whited GM.
Org.
Synth.
1999,
76:
77
<A NAME="RG08210ST-12">12</A>
Chung SK.
Kwon YU.
Bioorg. Med. Chem. Lett.
1999,
9:
2135
<A NAME="RG08210ST-13">13</A>
Gigg J.
Gigg R.
Payne S.
Conant R.
Carbohydr. Res.
1985,
142:
132
<A NAME="RG08210ST-14">14</A>
Podeschwa M.
Plettenburg O.
vom Brocke J.
Block O.
Adelt S.
Altenbach HJ.
Eur. J. Org. Chem.
2003,
1958
<A NAME="RG08210ST-15">15</A>
Mandel M.
Hudlicky T.
J. Chem. Soc., Perkin Trans.
1
1993,
741
<A NAME="RG08210ST-16">16</A>
Mandel M.
Hudlicky T.
J. Chem. Soc., Perkin Trans.
1
1993,
1537
<A NAME="RG08210ST-17">17</A>
Kowarski CR.
Sarel S.
J. Org. Chem.
1973,
38:
117
<A NAME="RG08210ST-18">18</A>
Carpintero M.
Fernandez Mayoralas A.
Jaramillo C.
J. Org. Chem.
1997,
62:
1916
<A NAME="RG08210ST-19">19</A>
Heo JN.
Holson EB.
Roush WR.
Org. Lett.
2003,
5:
1697
<A NAME="RG08210ST-20">20</A>
Angyal SJ.
Matheson NK.
J. Am. Chem. Soc.
1955,
77:
4343
<A NAME="RG08210ST-21">21</A>
Nakajima M.
Tomida I.
Kurihara N.
Takei S.
Chem. Ber.
1959,
92:
173
<A NAME="RG08210ST-22">22</A>
Lee HW.
Kishi Y.
J. Org. Chem.
1985,
50:
4402
<A NAME="RG08210ST-23A">23a</A>
Billington DC.
Baker R.
J.
Chem. Soc., Chem. Commun.
1987,
1011
<A NAME="RG08210ST-23B">23b</A>
Andersch P.
Schneider MP.
Tetrahedron: Asymmetry
1993,
4:
2135
<A NAME="RG08210ST-23C">23c</A>
Billington DC.
Baker R.
Kulagowski JJ.
Mawer IM.
Vacca JP.
de Solms SJ.
Huff JR.
J.
Chem. Soc., Perkin Trans. 1
1989,
1423
<A NAME="RG08210ST-24A">24a</A>
Gilbert IH.
Holmes AB.
Pestchanker MJ.
Young RC.
Carbohydr. Res.
1992,
234:
117
<A NAME="RG08210ST-24B">24b</A>
Gilbert IH.
Holmes AB.
Young RC.
Tetrahedron Lett.
1990,
31:
2633
<A NAME="RG08210ST-25">25</A>
Al Neirabeyeh M.
Rollin P.
J. Carbohydr. Chem.
1990,
9:
471
<A NAME="RG08210ST-26A">26a</A>
Dess DB.
Martin JC.
J.
Org. Chem.
1983,
48:
4155
<A NAME="RG08210ST-26B">26b</A>
Dess DB.
Martin JC.
J.
Am. Chem. Soc.
1991,
113:
7277
<A NAME="RG08210ST-27">27</A>
Ketone 9 was
obtained as an oil, which was partly decomposed upon flash column
chromatography on silica gel.
<A NAME="RG08210ST-28">28</A>
Alcohol 4 (20.18
g, 43.63 mmol) was dissolved in anhyd CH2Cl2 (500
mL) and Dess-Martin periodinane (20.59 g, 48.55 mmol, 1.1
equiv) was added. The resulting mixture was stirred at r.t. until
complete conversion of 4 was monitored
by TLC. The organic layer was washed several times with an aq solution
of Na2S2O3/NaHCO3,
dried, and evaporated. Ketone 9 was obtained
as an oil (19.85 g, 43.10 mmol, 99%) and can be used without
further purification; R
f
= 0.7
(hexanes-EtOAc, 2:1). ¹H NMR (500 MHz, CDCl3): δ = 3.95-3.97
(m, 2 H), 4.51 (d, ²
J = 11.6
Hz, 2 H), 4.52-4.54 (m, 2 H), 4.64 (d, ²
J = 4.8 Hz,
1 H), 4.67 (d, ²
J = 11.6
Hz, 2 H), 4.73 (s, 2 H), 4.76 (t, ³
J = 1.3 Hz,
1 H), 5.52 (d, ³
J = 4.8
Hz, 1 H), 7.24-7.41 (m, 15 H). ¹³C
NMR (125 MHz, CDCl3): δ = 69.8
(CH), 71.1 (CH2), 72.2 (CH), 72.3 (CH2), 81.6
(CH), 85.5 (CH2), 127.8 (CH), 127.9 (CH), 127.9 (CH),
128.3 (CH), 128.4 (CH), 136.8 (C), 137.3 (C), 202.7 (C). HRMS: m/z [M + H]+ calcd
for C28H28O6 + H: 461.1964;
found: 461.1986.
<A NAME="RG08210ST-29">29</A>
Ketone 9 (19.84
g, 43.08 mmol) was dissolved in anhyd MeOH (800 mL) and NaBH4 (1.98
g, 52.39 mmol, 1.2 equiv) was added. The reaction mixture was stirred
about 20 min until gas and heat evolution ceased. This mixture was directly
used in the next step. To obtain spectroscopic data a small sample
(2 mL) was taken from the mixture, and the solvent was evaporated.
The resulting residue was treated with 0.1 M aq HCl solution and
extracted thrice with Et2O. The combined organic layers
were dried and evaporated giving a pale yellow oil (49 mg, 0.10
mmol, 98%) with a ratio of 8 (neo) to 4 (myo) of 7.8:1 (determined by ¹H
NMR); R
f
(8) = 0.46 (hexanes-EtOAc,
2:1); R
f
(4) = 0.44 (hexanes-EtOAc,
2:1). ¹H NMR (8): δ = 2.74
(br s, 1 H), 3.91-3.96 (m, 2 H), 4.30-4.32 (m,
1 H), 4.34-4.37 (m, 2 H), 4.43-4.47 (m, 1 H),
4.52 (s, 2 H), 4.59 (d, ²
J = 11.9
Hz, 2 H), 4.63 (d, ²
J = 4.5
Hz, 1 H), 4.67 (d, ²
J = 11.9
Hz, 2 H), 5.52 (d, ²
J = 4.5
Hz, 1 H), 7.25-7.39 (m, 15 H). ¹H NMR
(4): matches with literature.²4
<A NAME="RG08210ST-30">30</A>
The reaction mixture of the previous
step, containing 8 + 4, was treated with concd HCl (60 mL) and
refluxed for 3 h. The solvents were evaporated, and the resulting
residue was treated with H2O and extracted thrice with
CH2Cl2. The combined organic layers were dried,
evaporated, and the resulting residue purified by flash chromatography
(silica, CHCl3 → CHCl3-EtOAc,
1:2) giving 10 as colorless crystals (14.96
g, 33.21 mmol, 77%); mp 97-98 ˚C; R
f
= 0.26 (CHCl3-EtOAc,
1:2).